Smoothed Particle Hydrodynamics
Techniques for the Physics Based Simulation of Fluids and Solids

Incompressibility

Dan Koschier Jan Bender Barbara Solenthaler Matthias Teschner
SPH Fluid Solver

- Neighbor search
- Incompressibility
- Boundary handling
Outline

– Introduction
– Concepts
 – State equation
 – Iterative state equation
 – Pressure Poisson equation
– Current developments
Motivation

- Incompressibility is essential for a realistic fluid behavior
 - Less than 0.1% volume / density deviation in typical scenarios
- Inappropriate compression leads, e.g., to volume oscillations or volume loss
- Enforcing incompressibility significantly influences the performance
 - Simple approaches require small time steps
 - Expensive approaches work with large time steps
Approaches

– Minimization of density / volume errors
 – Measure difference of actual and desired density
 – Compute pressure and pressure accelerations that reduce density / volume deviations

– Minimization of velocity divergence
 – Measure the divergence of the velocity field
 – Compute pressure and pressure accelerations that reduce the divergence of the velocity field
Typical Implementation

- Split pressure and non-pressure acceleration
 \[\frac{Dv(t)}{Dt} = -\frac{1}{\rho(t)} \nabla p(t) + a^{\text{nonp}}(t) \]
- Predict velocity after non-pressure acceleration
 \[v^* = v(t) + \Delta t a^{\text{nonp}}(t) \]
- Compute pressure such that pressure acceleration either minimizes the divergence of \(v^* \) or the density error after advecting the samples with \(v^* \)
- Update velocity \(v(t + \Delta t) = v^* - \Delta t \frac{1}{\rho(t)} \nabla p(t) \)
 - Minimized density error / divergence at advected samples
Density Invariance vs. Velocity Divergence

- Continuity equation: \(\frac{D\rho_i}{Dt} = -\rho_i \nabla \cdot \mathbf{v}_i \)
 - Time rate of change of the density is related to the divergence of the velocity

\[
\begin{align*}
\frac{D\rho_i}{Dt} &= -\rho_i \nabla \cdot \mathbf{v}_i = 0 & \quad \nabla \cdot \mathbf{v}_i &= 0 \\
\frac{D\rho_i}{Dt} &= -\rho_i \nabla \cdot \mathbf{v}_i < 0 & \quad \nabla \cdot \mathbf{v}_i &> 0 \\
\frac{D\rho_i}{Dt} &= -\rho_i \nabla \cdot \mathbf{v}_i > 0 & \quad \nabla \cdot \mathbf{v}_i &< 0
\end{align*}
\]
Density Invariance vs. Velocity Divergence

- Density invariance
 - Measure and minimize density deviations
- Velocity divergence
 - Measure and minimize the divergence of the velocity field
 - Zero velocity divergence corresponds to zero density change over time $-\rho_i \nabla \cdot \mathbf{v}_i = \frac{D\rho_i}{Dt} = 0$, i.e. the initial density does not change over time
 - Notion of density is not required
Challenges

- Minimizing density deviations can result in *volume oscillations*
 - Density error is going up and down
 - Erroneous fluid dynamics
 - Only very small density deviations are tolerable, e.g. 0.1%

https://www.youtube.com/watch?v=hAPO0xBp5WU
Challenges

- Minimizing the velocity divergence can result in volume loss
 - Divergence errors result in density drift
 - No notion of actual density

[Zhu, Lee, Quigley, Fedkiw, ACM SIGGRAPH 2015]
SPH Graphics Research - Incompressibility

- State equation
 - [Becker 2007]

- Iterative state equation
 - PCISPH [Solenthaler 2009],
 LPSPH [He 2012],
 PBF [Macklin 2013]

- Pressure Poisson equation
 - IISPH [Ihmsen 2013],
 DFSPH [Bender 2015],
 [Cornelis 2018]
Incompressibility – Applications

– Fluids
– Elastic solids
– Rigid bodies
– Monolithic solvers with unified representations
Valley

up to 38M fluid particles interacting with more than 650 rigid bricks, highly viscous mud and an elastic tree

[Gissler et al., presented at ACM SIGGRAPH 2019]
Outline

- Introduction
- Concepts
 - State equation
 - Iterative state equation
 - Pressure Poisson equation
- Current developments
State Equation SPH (SESPH)

– Compute pressure from the density deviation locally with one equation for each sample / particle
– Compute pressure acceleration
State Equations

– Pressure is proportional to density error
 – E.g. \(p_i = k \left(\frac{\rho_i}{\rho_0} - 1 \right) \) or \(p_i = k (\rho_i - \rho_0) \)
 – Referred to as compressible SPH
 – \(p_i = k \left(\left(\frac{\rho_i}{\rho_0} \right)^7 - 1 \right) \)
 – Referred to as weakly compressible SPH

Pressure values in SPH implementations should always be non-negative.
for all particle i do
 find neighbors j

for all particle i do
 $\rho_i = \sum_j m_j W_{ij}$
 $p_i = k\left(\frac{p_i}{\rho_0} - 1\right)$

Compute pressure with a state equation

for all particle i do
 $a_{i,\text{nonp}} = \nu \nabla^2 v_i + g$
 $a_{i,p} = -\frac{1}{\rho_i} \nabla p_i$
 $a_i(t) = a_{i,\text{nonp}} + a_{i,p}$

for all particle i do
 $v_i(t + \Delta t) = v_i(t) + \Delta t a_i(t)$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$

SESPH - Discussion

- Compression results in pressure
- Pressure gradients result in accelerations from high to low density
- Simple computation, small time steps
- Larger stiffness \rightarrow less compressibility \rightarrow smaller time step
- Stiffness constant k does not govern the pressure, but the compressibility of the fluid
Stiffness Constant – 1D Illustration

- Gravity cancels pressure acceleration
 \[\mathbf{g} = -\mathbf{a}^p_i = \frac{1}{\rho_i} \nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij} \]
 \[= \sum_j m_j \left(\frac{k(\rho_i - \rho_0)}{\rho_i^2} + \frac{k(\rho_j - \rho_0)}{\rho_j^2} \right) \nabla W_{ij} \]

- Differences between \(p_i \) and \(p_j \) are independent from \(k \)

- Smaller \(k \) results in larger density error \(\rho_i - \rho_0 \) to get the required pressure

\[
p_0 = \rho_0 g(h_1 - h) \\
p_1 = \rho_1 gh_1 \\
p_2 = \rho_2 g(h_1 + h)
\]
SESHPH with Splitting

- Split pressure and non-pressure accelerations
 - Non-pressure acceleration \(a_{i}^{\text{nonp}} \)
 - Predicted velocity \(v_{i}^{*} = v_{i}(t) + \Delta t a_{i}^{\text{nonp}} \)
 - Predicted position \(x_{i}^{*} = x_{i}(t) + \Delta t v_{i}^{*} \)
 - Predicted density \(\rho_{i}^{*}(x_{i}^{*}) \)
 - Pressure \(p \) from predicted density \(\rho_{i}^{*} \)
 - Pressure acceleration \(a_{i}^{p} \)
 - Final velocity and position
 \(v_{i}(t + \Delta t) = v_{i}^{*} + \Delta t a_{i}^{p} = v_{i}^{*} - \Delta t \frac{1}{\rho_{i}^{*}} \nabla p_{i} \)
 \(x_{i}(t + \Delta t) = x_{i}(t) + \Delta t v_{i}(t + \Delta t) \)
SESPH with Splitting

for all particle i do
 find neighbors j

for all particle i do
 $a_i^{\text{nonp}} = \nu \nabla^2 v_i + g$
 $v_i^* = v_i(t) + \Delta t a_i^{\text{nonp}}$

for all particle i do
 $\rho_i^* = \sum_j m_j W_{ij} + \Delta t \sum_j m_j (v_i^* - v_j^*) \nabla W_{ij}$
 $p_i = k \left(\frac{\rho_i^*}{\rho_0} - 1 \right)$

for all particle i do
 $a_i^p = -\frac{1}{\rho_i} \nabla p_i$

for all particle i do
 $v_i(t + \Delta t) = v_i^* + \Delta t a_i^p$
 $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$

Density at predicted positions
Pressure at predicted positions
Differential Density Update

– Density at advected positions is often approximated without advecting the samples

– Continuity equation and time discretization

$$\frac{D\rho_i}{Dt} = -\rho_i \nabla \cdot \mathbf{v}_i \quad \frac{\rho_i^* - \rho_i(t)}{\Delta t} = -\rho_i \nabla \cdot \mathbf{v}_i^*$$

– SPH discretization

$$\frac{\rho_i^* - \sum_j m_i W_{ij}}{\Delta t} = -\rho_i \left(-\frac{1}{\rho_i} \sum_j m_j (\mathbf{v}_i^* - \mathbf{v}_j^*) \nabla W_{ij} \right)$$

– Predicted density due to the divergence of \mathbf{v}_i^*

$$\rho_i^* = \sum_j m_i W_{ij} + \Delta t \sum_j m_j (\mathbf{v}_i^* - \mathbf{v}_j^*) \nabla W_{ij} \quad \text{Approximate density at predicted positions: } \mathbf{x}_i^* = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i^*$$
SESPH with Splitting - Discussion

- Consider competing accelerations
- Take effects of non-pressure accelerations into account when computing the pressure acceleration
- Incompressibility has highest priority
Outline

– Introduction
– Concepts
 – State equation
 – Iterative state equation
 – Pressure Poisson equation
– Current developments
Iterative SESPH with Splitting

- Pressure accelerations are iteratively refined
 - Non-pressure acceleration
 \[a_i^{\text{nonp}} \]
 - Predicted velocity
 \[\mathbf{v}_i^*(t) = \mathbf{v}_i(t) + \Delta t a_i^{\text{nonp}} \]
 - Iterate until convergence
 - Density from predicted position
 \[\rho_i^*(\mathbf{x}_i, \mathbf{v}_i^*) \]
 - Pressure from predicted density
 \[p_i \]
 - Pressure acceleration
 \[a_i^p \]
 - Refine predicted velocity
 \[\mathbf{v}_i^* = \mathbf{v}_i^* + \Delta t a_i^p \]
 - Final velocity and position
 \[\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i^* \]
 \[\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t) \]
Iterative SESPH with Splitting - Motivation

- Iterative update is parameterized by a desired density error
- Provides a fluid state with a guaranteed density error
- Stiffness parameter and form of the state equation govern the convergence rate
Iterative SESPH with Splitting

for all particle i do
 find neighbors j

for all particle i do
 $a_{i}^{\text{nonp}} = \nu \nabla^2 v_i + g$; $v_i^* = v_i(t) + \Delta t a_{i}^{\text{nonp}}$

repeat
 for all particle i do
 $\rho_i^* = \sum_j m_j W_{ij} + \Delta t \sum_j m_j (v_i^* - v_j^*) \nabla W_{ij}$
 $p_i = k(\frac{\rho_i^*}{\rho_0} - 1)$

 for all particle i do
 $v_i^* = v_i^* - \Delta t \frac{1}{\rho_i^*} \nabla p_i$

until $\rho_i^* - \rho_0 < \eta$
 user-defined density error

for all particle i do
 $v_i(t + \Delta t) = v_i^*$; $x_i(t + \Delta t) = x_i(t) + \Delta t v_i(t + \Delta t)$
Iterative SESPH - Variants

– Different quantities are accumulated
 – Velocity changes (local Poisson SPH LPSPH)
 – Pressure (predictive-corrective SPH PCISPH) [Solenthaler 2009]
 – Advantageous, if pressure is required for other computations
 – Distances (position-based fluids PBF)
 \[\Delta x_i = -\frac{1}{\rho_0} \sum_j \left(\frac{p_i}{\beta_i} + \frac{p_j}{\beta_j} \right) \nabla W_{ij} \]

– Different EOS and stiffness constants are used
 – \(\tilde{p}_i = k(\rho_i - \rho_0) \) with \(k = \frac{\rho_i^* r_i^2}{2\rho_0 \Delta t^2} \) in local Poisson SPH
 – \(p_i = k(\rho_i - \rho_0) \) with \(k = \frac{\rho_0^2}{2m_i^2 \Delta t^2 (\sum_j \nabla W_{ij}^0 \cdot \nabla W_{ij}^0 + \sum_j (\nabla W_{ij}^0 \cdot \nabla W_{ij}^0))} \) in PCISPH
 – \(\tilde{p}_i = k(\frac{\rho_i}{\rho_0} - 1) \) with \(k = 1 \) in PBF
Predictive-Corrective Incompressible SPH - PCISPH

- **Goal**: Computation of pressure accelerations a^p_i that result in rest density ρ_0 at all particles

- **Formulation**: Density at the next time step should equal the rest density

\[
\rho(t+\Delta t) = \rho_0 = \sum_i m_i W_{ij} + \Delta t \sum_i m_j (v_i^* - v_j^*) \nabla W_{ij} + \Delta t \sum_i m_j (\Delta t a^p_i - \Delta t a^p_j) \nabla W_{ij}
\]

Discretized continuity equation
PCISPH - Assumptions

– **Simplifications** to get one equation with one unknown:
 – Equal pressure at all neighboring samples

\[
\mathbf{a}_i^P = - \sum_j m_j \left(\frac{p_i}{\rho_i} + \frac{p_j}{\rho_j} \right) \nabla W_{ij} \approx -m_i \frac{2p_i}{\rho_0^2} \sum_j \nabla W_{ij}
\]

\[
\rho_0 - \rho_i^* = \Delta t^2 \sum_j m_j \left(-m_i \frac{2p_i}{\rho_0^2} \sum_j \nabla W_{ij} + m_j \frac{2p_j}{\rho_0^2} \sum_k \nabla W_{jk} \right) \nabla W_{ij} \quad \text{Unknown pressures } \rho_i \text{ and } \rho_j
\]

– For sample \(j \), only consider the contribution from \(i \)

\[
\rho_0 - \rho_i^* = \Delta t^2 \sum_j m_j \left(-m_i \frac{2p_i}{\rho_0^2} \sum_j \nabla W_{ij} + m_i \frac{2p_i}{\rho_0^2} \nabla W_{ji} \right) \nabla W_{ij} \quad \text{Unknown pressure } \rho_i
\]

\[
\rho_0 - \rho_i^* = \Delta t^2 m_i^2 \frac{2p_i}{\rho_0^2} \sum_j \left(\nabla W_{ij} - \nabla W_{ji} \right) \nabla W_{ij} = -\Delta t^2 m_i^2 \frac{2p_i}{\rho_0^2} \left(\sum_j \nabla W_{ij} \cdot \sum_j \nabla W_{ij} + \sum_j (\nabla W_{ij} \cdot \nabla W_{ij}) \right)
\]
PCISPH - Solution

– Solve for unknown pressure:

\[
\rho_0 - \rho_i^* = -\Delta t^2 m_i^2 \frac{2p_i}{\rho_0^2} \left(\sum_j \nabla W_{ij} \cdot \sum_j \nabla W_{ij} + \sum_j (\nabla W_{ij} \cdot \nabla W_{ij}) \right)
\]

\[
p_i = \frac{\rho_0^2}{2\Delta t^2 m_i^2 (\sum_j \nabla W_{ij} \cdot \sum_j \nabla W_{ij} + \sum_j (\nabla W_{ij} \cdot \nabla W_{ij}))} (\rho_i^* - \rho_0) \quad (p_i = k(\rho_i^* - \rho_0))
\]

Intuition: This pressure causes pressure accelerations that cause velocity changes that correspond to a divergence that results in rest density at the sample.

\[
\rho(t + \Delta t) = \rho_0 = \rho_i^* + \Delta t \sum_j m_j (\Delta t \alpha_i^p - \Delta t \alpha_j^p) \nabla W_{ij}
\]
PCISPH - Discussion

- Pressure is computed with a state equation \(p_i = k_i (\rho_i^* - \rho_0) \)
- \(k_i \) is not user-defined
- Instead, an optimized value \(k_i \) is derived and used
- Pressure is iteratively refined
PCISPH - Performance

– Typically three to five iterations for density errors between 0.1% and 1%
– Speed-up factor over non-iterative SESPH up to 50
 – More computations per time step compared to SESPH
 – Significantly larger time step than in SESPH
 – Speed-up dependent on scenario
– Non-linear relation between time step and iterations
 – Largest possible time step does not necessarily lead to an optimal overall performance
Comparison

- PCISPH [Solenthaler 2009]
 - Iterative pressure computation
 - Large time step
- WCSPH [Becker and Teschner 2007]
 - Efficient to compute
 - Small time step
- Computation time for the PCISPH scenario is 20 times shorter than WCSPH
Outline

– Introduction
– Concepts
 – State equation
 – Iterative state equation
 – Pressure Poisson equation
– Current developments

Introduction

– Pressure causes pressure accelerations that cause velocity change that cause displacements such that particles have rest density

– Projection schemes solve a linear system to compute the respective pressure field
 – PCISPH uses simplifications to compute pressure per particle from one equation. Solving a linear system is avoided.
Derivation

\[\frac{Dv(t)}{Dt} = -\frac{1}{\rho} \nabla p(t) + a_{\text{nonp}}(t) \]

Velocity change per time step due to pressure acceleration and non-pressure acceleration

\[v^* = v(t) + \Delta t a_{\text{nonp}}(t) \]

Predicted velocity after non-pressure acceleration

\[v(t + \Delta t) = v^* - \Delta t \frac{1}{\rho} \nabla p(t) \]

Velocity after all accelerations

\[v(t + \Delta t) - v^* = -\Delta t \frac{1}{\rho} \nabla p(t) \]

Velocity change due to pressure acceleration

\[\nabla \cdot (v^* - v(t + \Delta t)) = \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t) \right) \]

Divergence of the velocity change due to pressure acceleration
Derivation

\[\nabla \cdot (\mathbf{v}^* - \mathbf{v}(t + \Delta t)) = \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t) \right) \]

\[\nabla \cdot \mathbf{v}^* - \nabla \cdot \mathbf{v}(t + \Delta t) = \nabla \cdot \left(\Delta t \frac{1}{\rho} \nabla p(t) \right) \]

Constraint: \[\nabla \cdot \mathbf{v}(t + \Delta t) = 0 \]

Divergence of the final velocity field should be zero, i.e. no density change per time

\[\nabla \cdot \mathbf{v}^* = -\nabla \cdot (\Delta t \mathbf{a}^P) \]

Divergence of the velocity change due to pressure acceleration should cancel the divergence of the predicted velocity

\[\rho \nabla \cdot \mathbf{v}^* = \Delta t \nabla^2 p(t) \]

Pressure Poisson equation with unknown pressure
Density Invariance vs. Velocity Divergence

– Pressure Poisson equation PPE that minimizes the velocity divergence: \(\Delta t \nabla^2 p(t) = \rho \nabla \cdot v^* \)

– PPE that minimizes the density error: \(\Delta t \nabla^2 p(t) = \frac{\rho_0 - \rho^*}{\Delta t} \)

– Derivation:

\[
\frac{D\rho(t+\Delta t)}{Dt} + \rho(t + \Delta t) \nabla \cdot v(t + \Delta t) = 0
\]

Constraint: \(\rho(t + \Delta t) = \rho_0 \)

\[
\frac{\rho_0 - \rho(t)}{\Delta t} + \rho_0 \nabla \cdot \left(v^* - \Delta t \frac{1}{\rho_0} \nabla p(t) \right) = 0
\]

\[
\frac{\rho_0 - (\rho(t) - \Delta t \rho_0 \nabla \cdot v^*)}{\Delta t} - \Delta t \nabla^2 p(t) = 0
\]

\[
\rho^* = \rho(t) - \Delta t \rho_0 \nabla \cdot v^*
\]
Interpretation of PPE Forms

- **Velocity divergence:**
 \[-\Delta t \frac{1}{\rho} \nabla^2 p = -\nabla \cdot \mathbf{v}^* \]

 - Pressure p causes a pressure acceleration $-\frac{1}{\rho} \nabla p$ that causes a velocity change $-\Delta t \frac{1}{\rho} \nabla p$ whose divergence $\nabla \cdot (-\Delta t \frac{1}{\rho} \nabla p)$ cancels the divergence $\nabla \cdot \mathbf{v}^*$ of the predicted velocity, i.e.
 \[\nabla \cdot \mathbf{v}^* + \nabla \cdot (-\Delta t \frac{1}{\rho} \nabla p) = 0 \]

- **Density invariance:**
 \[-\Delta t \nabla^2 p = -\frac{\rho_0 - \rho^*}{\Delta t} \]

 - The divergence $\nabla \cdot (-\Delta t \frac{1}{\rho} \nabla p)$ multiplied with density ρ is a density change per time that cancels the predicted density error per time $\frac{\rho_0 - \rho^*}{\Delta t}$, i.e.
 \[\frac{\rho_0 - \rho^*}{\Delta t} + \rho \nabla \cdot (-\Delta t \frac{1}{\rho} \nabla^2 p) = 0 \]
PPE Solver

- Linear system with unknown pressure values $A p = s$
 - One equation per particle $(A p)_i = s_i \quad (\Delta t < \nabla^2 p_i > = \frac{\rho_0 - <\rho_i^* >}{\Delta t})$
- Iterative solvers
 - Conjugate Gradient
 - Relaxed Jacobi
- Fast computation per iteration
 - Few non-zero entries in each equation
 - Matrix-free implementations
 - Very few information per particle

$<A>$ is a discretized form of A
PPE Solver

- Very large time steps
- Convergence dependent on the formulation
 - SPH discretization of $\nabla^2 p$
 - Source term (velocity divergence or density invariance)
- Accuracy issues
 - Volume drift for velocity divergence
 - Oscillations for density invariance
PPE Discretization

- **Implicit incompressible SPH (IISPH) [Ihmsen et al. 2014]**
 - PPE with density invariance as source term: $\Delta t^2 \nabla^2 p = \rho_0 - \rho^*$
 - Computation of ρ_i^*:
 \[
 \rho_i^* = \rho_i + \Delta t \sum_j m_j v_{ij}^* \nabla W_{ij} \quad \text{with} \quad v_{ij}^* = v_i + \Delta t a_{i}^{\text{nonp}}
 \]
 - Computation of $\Delta t^2 \nabla^2 p_i$:
 \[
 \Delta t^2 \nabla^2 p_i = -\Delta t \rho_i \nabla \cdot (\Delta t a_i^p) = \Delta t^2 \sum_j m_j (a_i^p - a_j^p) \cdot \nabla W_{ij}
 \]
 with
 \[
 a_i^p = -\frac{1}{\rho_i} \nabla p_i = -\sum_j m_j \left(\frac{v_i}{\rho_i^2} + \frac{v_j}{\rho_j^2} \right) \nabla W_{ij}
 \]
PPE System - IISPH

- **PPE**
 \[\Delta t^2 \nabla^2 p_i = \rho_0 - \rho_i^* \]

 density change due to pressure accelerations negative of the predicted density error

- Discretized PPE
 - **System:** \[A p = s \]
 - **Per particle:** \[\Delta t^2 \sum_j m_j (\alpha_i^p - \alpha_j^p) \nabla W_{ij} = \rho_0 - \rho_i^* \]
 \[\alpha_i^p = - \sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} \right) \nabla W_{ij} \]
 - **Interpretation:**
 \[\Delta t \sum_j m_j (\Delta t \alpha_i^p - \Delta t \alpha_j^p) \nabla W_{ij} = \rho_0 - \rho_i^* \]
 \[\Delta t \sum_j m_j (v_i^p - v_j^p) \nabla W_{ij} = \rho_0 - \rho_i^* \]
 \[\Delta t \cdot \rho_i \cdot \nabla \cdot v_i^p = \rho_0 - \rho_i^* \]

 Pressure accelerations cause a velocity change \(\mathbf{v}^p \) whose divergence causes a density change.
PPE Solver - IISPH

- Relaxed Jacobi: $p_i^{l+1} = \max \left(p_i^l + \omega \frac{s_i - (Ap_i^l)}{a_{ii}}, 0 \right)$
 - For IISPH, typically $\omega = 0.5$
 - Diagonal element a_{ii}
 - Accumulate all coefficients of p_i in $\Delta t^2 \sum_j m_j (\alpha_i^p - \alpha_j^p) \nabla W_{ij}$
 - $a_{ii} = \Delta t^2 \sum_j m_j \left(- \sum_j \frac{m_j}{\rho_j^2} \nabla W_{ij} \right) \cdot \nabla W_{ij} + \Delta t^2 \sum_j m_j \left(\frac{m_j}{\rho_i^2} \nabla W_{ji} \right) \cdot \nabla W_{ij}$

- Note, that the first pressure update is $p_i^1 = 0 + \omega \frac{s_i}{a_{ii}} = \omega \frac{\rho_0 - \rho^*}{a_{ii}}$ State equation
- Using the incompressible PPE variant IISPH with one solver iteration corresponds to compressible state-equation SPH with $p_i = -\frac{\omega}{a_{ii}}(\rho^* - \rho_0)$
PPE Solver Implementation - IISPH

- Initialization:
 \[\rho_i = \sum_j m_j W_{ij}, \quad a_{ii} = \ldots \]
 \[\mathbf{v}_{i}^{*} = \mathbf{v}_{i} + \Delta t \mathbf{a}_{i}^{\text{nonp}} \]
 \[s_{i} = \rho_0 - \rho_{i} - \Delta t \sum_j m_j \mathbf{v}_{i}^{*} \nabla W_{ij} \]
 \[p_{i}^{0} = \max \left(\omega \frac{s_{i}}{a_{ii}}, 0 \right) \]

- Solver update in iteration \(l \):
 - First loop:
 \[(\mathbf{a}_{i}^{p})^{l} = -\sum_j m_j \left(\frac{p_{i}^{l}}{\rho_{i}^{2}} + \frac{p_{j}^{l}}{\rho_{j}^{2}} \right) \nabla W_{ij} \]
 - Second loop:
 \[(\mathbf{A} \mathbf{p})^{l} = \Delta t^2 \sum_j m_j \left((\mathbf{a}_{i}^{p})^{l} - (\mathbf{a}_{j}^{p})^{l} \right) \nabla W_{ij} \]
 \[p_{i}^{l+1} = \max \left(p_{i}^{l} + \omega \frac{s_{i} - (\mathbf{A} \mathbf{p})^{l}}{a_{ii}}, 0 \right) \quad \text{If } a_{ii} \text{ not equal to zero} \]
 \[(\rho_{i}^{\text{error}})^{l} = (\mathbf{A} \mathbf{p})^{l} - s_{i} \quad \text{Continue until error is small} \]
Boundary Handling - IISPH

- PPE: \(\Delta t^2 \nabla^2 p_f = \rho_0 - \rho_f^* = \rho_0 - \rho_f + \Delta t \rho_0 \nabla \cdot \mathbf{v}_f^* \)

- Discretized PPE: \(A \mathbf{p} = \mathbf{s} \)

\[
\begin{align*}
(A \mathbf{p})_f &= \Delta t^2 \sum_{f_f} m_{f_f} \left(a^p_f - a^p_{f_f} \right) \nabla W_{f_f f} + \Delta t^2 \sum_{b_f} m_{b_f} a^p_f \nabla W_{f_f b_f} \\
&\quad + \sum_{f_f} \frac{m_{f_f}}{\rho_f^2} \left(p_f + \frac{p_f}{\rho_f^2} \right) \nabla W_{f_f f} - \gamma \sum_{b_f} m_{b_f} \frac{p_f}{\rho_f^2} \nabla W_{f_f b_f} \\
&\quad + \Delta t \sum_{f_f} m_{f_f} \left(\mathbf{v}_f^* - \mathbf{v}_{f_f}^* \right) \nabla W_{f_f f} - \Delta t \sum_{b_f} m_{b_f} \left(\mathbf{v}_f^* - \mathbf{v}_{b_f} (t + \Delta t) \right) \nabla W_{f_f b_f}
\end{align*}
\]

Index \(f \) indicates a fluid sample.
Index \(b \) indicates a boundary sample.
\(f_f \) indicates a fluid neighbor of \(f \).
\(b_f \) indicates a boundary neighbor of \(f \).
Boundary Handling - IISPH

- Diagonal element

\[
a_{ff} = \Delta t^2 \sum_{ff} m_{ff} \left(- \sum_{ff} \frac{m_{ff}}{\rho_{ff}^2} \nabla W_{ff} - 2\gamma \sum_{fb} \frac{m_{fb}}{\rho_0^2} \nabla W_{ff} \right) \nabla W_{ff} \\
+ \Delta t^2 \sum_{ff} m_{ff} \left(\frac{m_{f}}{\rho_f^2} \nabla W_{ff} \right) \nabla W_{ff} \\
+ \Delta t^2 \sum_{fb} m_{fb} \left(- \sum_{ff} \frac{m_{ff}}{\rho_{ff}^2} \nabla W_{ff} - 2\gamma \sum_{fb} \frac{m_{fb}}{\rho_0^2} \nabla W_{ff} \right) \nabla W_{ff}
\]
IISPH with Boundary - Implementation

- Initialization:
 \[\rho_f = \sum_{f} m_{f} W_{f f} + \sum_{b} m_{b} W_{f b} \quad a_{f f} = \ldots \]
 \[v_f^* = v_f + \Delta t a_{f}^{\text{nonp}} \]
 \[s_f = \rho_0 - \rho_f - \Delta t \sum_{f} m_{f} v_{f f}^* \nabla W_{f f} - \Delta t \sum_{b} m_{b} v_{f b}^* \nabla W_{f b} \]
 \[p_{f}^{0} = \max \left(\omega \frac{s_f}{a_{f f}}, 0 \right) \]

- Solver update in iteration /:
 - First loop:
 \[(a_{f}^{p})^l = - \sum_{f} m_{f} \left(\frac{p_{f}^{l}}{\rho_{f}^{2}} + \frac{v_{f f}^{l}}{\rho_{f}^{2}} \right) \nabla W_{f f} - \gamma \sum_{b} m_{b} 2 \frac{p_{f}^{l}}{\rho_{f}^{2}} \nabla W_{f b} \]
 - Second loop:
 \[(A p_{f}^{l}) = \Delta t^2 \sum_{f} m_{f} \left((a_{f}^{p})^{l} - (a_{f}^{p})^{l} \right) \nabla W_{f f} + \Delta t^2 \sum_{b} m_{b} (a_{f}^{p})^{l} \nabla W_{f b} \]
 \[p_{f}^{l+1} = \max \left(p_{f}^{l} + \omega \frac{s_{f} - (A p_{f}^{l})}{a_{f f}}, 0 \right) \quad \text{If } a_{f f} \text{ not equal to zero} \]
 \[(\rho_{f}^{\text{error}})^l = (A p_{f}^{l}) - s_{f} \quad \text{Continue until error is small} \]
IISPH vs. PCISPH

- Breaking dam
 - 100k samples with diameter 0.05m, 0.01% ave density error

<table>
<thead>
<tr>
<th>Δt [s]</th>
<th>avg. iter.</th>
<th>total comp. time [s]</th>
<th>avg. iter.</th>
<th>total comp. time [s]</th>
<th>PCISPH / IISPH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pressure</td>
<td>overall</td>
<td>pressure</td>
<td>overall</td>
</tr>
<tr>
<td>0.0005</td>
<td>4.3</td>
<td>540</td>
<td>1195</td>
<td>2.2</td>
<td>148</td>
</tr>
<tr>
<td>0.00067</td>
<td>7.2</td>
<td>647</td>
<td>1145</td>
<td>2.9</td>
<td>149</td>
</tr>
<tr>
<td>0.001</td>
<td>14.9</td>
<td>856</td>
<td>1187</td>
<td>4.9</td>
<td>164</td>
</tr>
<tr>
<td>0.0025</td>
<td>66.5</td>
<td>1495</td>
<td>1540</td>
<td>18.4</td>
<td>242</td>
</tr>
<tr>
<td>0.004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.5</td>
<td>273</td>
</tr>
<tr>
<td>0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45.8</td>
<td>297</td>
</tr>
</tbody>
</table>

- Largest possible time step does not necessarily result in the best performance
Up to 500 million fluid samples
Outline

– Introduction
– Concepts
 – State equation
 – Iterative state equation
 – Pressure Poisson equation
– Current developments
Current Developments

– DFSPH [Bender 2015]
 – Combination of two PPEs (inspired by [Hu 2007])
 – Resolving compressibility and removing velocity divergence in two steps
 – Currently the most efficient solver
– [Cornelis 2018]
 – Various formulations for combining two PPEs
– [Fuerstenau 2017]
 – Discretization of the Laplacian